Distinct Patterns of Gene Gain and Loss: Diverse Evolutionary Modes of NBS-Encoding Genes in Three Solanaceae Crop Species

نویسندگان

  • Lan-Hua Qian
  • Guang-Can Zhou
  • Xiao-Qin Sun
  • Zhao Lei
  • Yan-Mei Zhang
  • Jia-Yu Xue
  • Yue-Yu Hang
چکیده

Plant resistance conferred by nucleotide binding site (NBS)-encoding resistance genes plays a key role in the defense against various pathogens throughout the entire plant life cycle. However, comparative analyses for the systematic evaluation and determination of the evolutionary modes of NBS-encoding genes among Solanaceae species are rare. In this study, 447, 255, and 306 NBS-encoding genes were identified from the genomes of potato, tomato, and pepper, respectively. These genes usually clustered as tandem arrays on chromosomes; few existed as singletons. Phylogenetic analysis indicated that three subclasses [TNLs (TIR-NBS-LRR), CNLs (CC-NBS-LRR), and RNLs (RPW8-NBS-LRR)] each formed a monophyletic clade and were distinguished by unique exon/intron structures and amino acid motif sequences. By comparing phylogenetic and systematic relationships, we inferred that the NBS-encoding genes in the present genomes of potato, tomato, and pepper were derived from 150 CNL, 22 TNL, and 4 RNL ancestral genes, and underwent independent gene loss and duplication events after speciation. The NBS-encoding genes therefore exhibit diverse and dynamic evolutionary patterns in the three Solanaceae species, giving rise to the discrepant gene numbers observed today. Potato shows a "consistent expansion" pattern, tomato exhibits a pattern of "first expansion and then contraction," and pepper presents a "shrinking" pattern. The earlier expansion of CNLs in the common ancestor led to the dominance of this subclass in gene numbers. However, RNLs remained at low copy numbers due to their specific functions. Along the evolutionary process of NBS-encoding genes in Solanaceae, species-specific tandem duplications contributed the most to gene expansions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of new NBS-LRR genes analogues in cucurbits native types in Iran

Nucleotide binding site leucine-rich repeats (NBS-LRR) accounting for the main disease resistance proteins play an important role in plant defense against pathogen attack. The current study aimed to identify new NBS-LRR gene members in native types of cucurbit species in Iran. Accordingly, DNAs of melon, cucumber and cantaloupe native types to Iran were identified using three primer pairs. PCR ...

متن کامل

A microRNA cascade in plant defense.

MicroRNAs (miRNAs) and other small interfering RNAs (siRNAs) play an important regulatory role in the growth and development of eukaryotes. miRNAs in plants are known to regulate the expressionof a number of key developmental and stress-related genes. New insight into miRNA function was gained recently with the discovery that several miRNA families target genes encoding nucleotide binding site–...

متن کامل

Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using f...

متن کامل

Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea)

The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this r...

متن کامل

Species-specific duplications of NBS-encoding genes in Chinese chestnut (Castanea mollissima)

The disease resistance (R) genes play an important role in protecting plants from infection by diverse pathogens in the environment. The nucleotide-binding site (NBS)-leucine-rich repeat (LRR) class of genes is one of the largest R gene families. Chinese chestnut (Castanea mollissima) is resistant to Chestnut Blight Disease, but relatively little is known about the resistance mechanism. We iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017